
Gauss’s Law



24.1 Electric Flux

⚫ Electric flux is the 

product of the 

magnitude of the 

electric field and the 

surface area, A, 

perpendicular to the 

field

⚫ ΦE = EA



Electric Flux, General Area

⚫ The electric flux is 

proportional to the 

number of electric field 

lines penetrating some 

surface

⚫ The field lines may 

make some angle θ

with the perpendicular 

to the surface

⚫ Then ΦE = EA cos θ



Electric Flux, Interpreting the 

Equation

⚫ The flux is a maximum when the surface is 

perpendicular to the field

⚫ The flux is zero when the surface is parallel 

to the field

⚫ If the field varies over the surface, Φ = EA

cos θ is valid for only a small element of the 

area



Electric Flux, General

⚫ In the more general 

case, look at a small 

area element

⚫ In general, this 

becomes
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Electric Flux, final

⚫ The surface integral means the integral must 

be evaluated over the surface in question

⚫ In general, the value of the flux will depend 

both on the field pattern and on the surface

⚫ The units of electric flux will be N.m2/C2



Electric Flux, Closed Surface

⚫ Assume a closed 
surface

⚫ The vectors       point in 
different directions
⚫ At each point, they are 

perpendicular to the 
surface

⚫ By convention, they point 
outward
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Flux Through Closed Surface, 

cont.

⚫ At (1), the field lines are crossing the surface from the inside 
to the outside; θ < 90o, Φ is positive

⚫ At (2), the field lines graze surface; θ = 90o, Φ = 0

⚫ At (3), the field lines are crossing the surface from the outside 
to the inside;180o > θ > 90o, Φ is negative



Flux Through Closed Surface, 

final

⚫ The net flux through the surface is 

proportional to the net number of lines 

leaving the surface

⚫ This net number of lines is the number of lines 

leaving the surface minus the number entering 

the surface

⚫ If En is the component of E perpendicular to 

the surface, then

dAEnE  == AE


d



Flux Through a Cube, Example

⚫ The field lines pass 

through two surfaces 

perpendicularly and are 

parallel to the other four 

surfaces

⚫ For side 1, E = -El 2

⚫ For side 2, E = El 2

⚫ For the other sides, E = 

0

⚫ Therefore, Etotal = 0



Karl Friedrich Gauss

⚫ 1777 – 1855

⚫ Made contributions in
⚫ Electromagnetism

⚫ Number theory

⚫ Statistics

⚫ Non-Euclidean geometry

⚫ Cometary orbital 
mechanics

⚫ A founder of the German 
Magnetic Union

⚫ Studies the Earth’s 
magnetic field



24.2 Gauss’s Law

⚫ Gauss’s law is an expression of the general 

relationship between the net electric flux 

through a closed surface and the charge 

enclosed by the surface

⚫ The closed surface is often called a gaussian 

surface

⚫ Gauss’s law is of fundamental importance in 

the study of electric fields



Gauss’s Law – General 

⚫ A positive point charge, 
q, is located at the 
center of a sphere of 
radius r

⚫ The magnitude of the 
electric field 
everywhere on the 
surface of the sphere is 
E = keq / r2



Gauss’s Law – General, cont.
⚫ The field lines are directed radially outward and are 

perpendicular to the surface at every point

⚫ This will be the net flux through the gaussian surface, the 

sphere of radius r

⚫ We know E = keq/r2 and Asphere = 4πr2,
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Gauss’s Law – General, notes

⚫ The net flux through any closed surface surrounding a point 

charge, q, is given by q/εo and is independent of the shape of 

that surface

⚫ The net electric flux through a closed surface that surrounds no 

charge is zero

⚫ Since the electric field due to many charges is the vector sum of 

the electric fields produced by the individual charges, the flux 

through any closed surface can be expressed as 
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Gaussian Surface, Example

⚫ Closed surfaces of 
various shapes can 
surround the charge
⚫ Only S1 is spherical

⚫ Verifies the net flux 
through any closed 
surface surrounding a 
point charge q is given 
by q/eo and is 
independent of the 
shape of the surface



Gaussian Surface, Example 2

⚫ The charge is outside 

the closed surface with 

an arbitrary shape

⚫ Any field line entering 

the surface leaves at 

another point

⚫ Verifies the electric flux 

through a closed 

surface that surrounds 

no charge is zero



Gauss’s Law – Final

⚫ Gauss’s law states

⚫ qin is the net charge inside the surface

⚫ represents the electric field at any point on the 

surface

⚫ is the total electric field and may have contributions from 

charges both inside and outside of the surface

⚫ Although Gauss’s law can, in theory, be solved to 

find for any charge configuration, in practice it is 

limited to symmetric situations
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24.3 Application of Gauss’s 

Law

⚫ To use Gauss’s law, you want to choose a 
gaussian surface over which the surface 
integral can be simplified and the electric field 
determined

⚫ Take advantage of symmetry

⚫ Remember, the gaussian surface is a surface 
you choose, it does not have to coincide with 
a real surface



Conditions for a Gaussian 

Surface

⚫ Try to choose a surface that satisfies one or more of 

these conditions:

⚫ The value of the electric field can be argued from 

symmetry to be constant over the surface

⚫ The dot product of can be expressed as a simple 

algebraic product EdA because and       are parallel

⚫ The dot product is 0 because and       are perpendicular

⚫ The field is zero over the portion of the surface

E

dE A

E dA
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Field Due to a Spherically 

Symmetric Charge Distribution

⚫ Select a sphere as the 

gaussian surface

⚫ For r >a
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Spherically Symmetric, cont.

⚫ Select a sphere as the 

gaussian surface, r < a

⚫ qin < Q

⚫ qin = (4/3πr3)

⚫  = Q/ (4/3πa3)
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Spherically Symmetric 

Distribution, final

⚫ Inside the sphere, E

varies linearly with r

⚫ E → 0 as r → 0

⚫ The field outside the 

sphere is equivalent to 

that of a point charge 

located at the center of 

the sphere



Field at a Distance from a Line 

of Charge

⚫ Select a cylindrical 
charge distribution 
⚫ The cylinder has a radius 

of r and a length of ℓ

⚫ is constant in 
magnitude and 
perpendicular to the 
surface at every point 
on the curved part of 
the surface

E



Field Due to a Line of Charge, 

cont.

⚫ The end view confirms 

the field is 

perpendicular to the 

curved surface

⚫ The field through the 

ends of the cylinder is 0 

since the field is 

parallel to these 

surfaces 



Field Due to a Line of Charge, 

final

⚫ Use Gauss’s law to find the field
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Field Due to a Plane of Charge

⚫ must be 
perpendicular to the 
plane and must have 
the same magnitude at 
all points equidistant 
from the plane

⚫ Choose a small cylinder 
whose axis is 
perpendicular to the 
plane for the gaussian 
surface

E



Field Due to a Plane of Charge, 

cont

⚫ is parallel to the curved surface and there is 

no contribution to the surface area from this 

curved part of the cylinder

⚫ The flux through each end of the cylinder is 

EA and so the total flux is 2EA

E



Field Due to a Plane of Charge, 

final

⚫ The total charge in the surface is σA

⚫ Applying Gauss’s law

⚫ Note, this does not depend on r

⚫ Therefore, the field is uniform everywhere
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Electrostatic Equilibrium

⚫ When there is no net motion of charge 

within a conductor, the conductor is said to 

be in electrostatic equilibrium



24.4 Conductors in 

Electrostatic Equilibrium

⚫ The electric field is zero everywhere inside the 
conductor
⚫ Whether the conductor is solid or hollow

⚫ If an isolated conductor carries a charge, the charge 
resides on its surface

⚫ The electric field just outside a charged conductor is 
perpendicular to the surface and has a magnitude of 
σ/εo

⚫ s is the surface charge density at that point

⚫ On an irregularly shaped conductor, the surface 
charge density is greatest at locations where the 
radius of curvature is the smallest



Property 1: Fieldinside = 0

⚫ Consider a conducting slab in 

an external field

⚫ If the field inside the 

conductor were not zero, free 

electrons in the conductor 

would experience an 

electrical force

⚫ These electrons would 

accelerate

⚫ These electrons would not be 

in equilibrium

⚫ Therefore, there cannot be a 

field inside the conductor

E



Property 1: Fieldinside = 0, cont.

⚫ Before the external field is applied, free electrons 
are distributed throughout the conductor

⚫ When the external field is applied, the electrons 
redistribute until the magnitude of the internal field 
equals the magnitude of the external field

⚫ There is a net field of zero inside the conductor

⚫ This redistribution takes about 10-16s and can be 
considered instantaneous



Property 2: Charge Resides on 

the Surface

⚫ Choose a gaussian surface 

inside but close to the actual 

surface

⚫ The electric field inside is 

zero (prop. 1)

⚫ There is no net flux through 

the gaussian surface

⚫ Because the gaussian 

surface can be as close to 

the actual surface as desired, 

there can be no charge inside 

the surface



Property 2: Charge Resides on 

the Surface, cont

⚫ Since no net charge can be inside the 

surface, any net charge must reside on the 

surface

⚫ Gauss’s law does not indicate the distribution 

of these charges, only that it must be on the 

surface of the conductor



Property 3: Field’s Magnitude 

and Direction

⚫ Choose a cylinder as 
the gaussian surface

⚫ The field must be 
perpendicular to the 
surface
⚫ If there were a parallel 

component to    , charges 
would experience a force 
and accelerate along the 
surface and it would not 
be in equilibrium

E



Property 3: Field’s Magnitude 

and Direction, cont.

⚫ The net flux through the gaussian surface is 

through only the flat face outside the 

conductor

⚫ The field here is perpendicular to the surface

⚫ Applying Gauss’s law
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Sphere and Shell Example

⚫ Conceptualize

⚫ Similar to the sphere 

example

⚫ Now a charged sphere is 

surrounded by a shell

⚫ Note charges

⚫ Categorize

⚫ System has spherical 

symmetry

⚫ Gauss’ Law can be 

applied
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Sphere and Shell Example

⚫ Analyze

⚫ Construct a Gaussian sphere between the 

surface of the solid sphere and the inner surface 

of the shell

⚫ The electric field lines must be directed radially 

outward and be constant in magnitude on the 

Gaussian surface



Sphere and Shell Example, 3

⚫ Analyze, cont

⚫ The electric field for each area can be calculated
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Sphere and Shell Example

⚫ Finalize

⚫ Check the net charge

⚫ Think about other possible combinations

⚫ What if the sphere were conducting instead of 

insulating?



Engineering Electromagnetics

Chapter 7:

The Steady Magnetic Field



Motivating the Magnetic Field Concept: 

Forces Between Currents

How can we describe a force field around wire 1 that can be used to determine the force on wire 2?

Magnetic forces arise whenever we have charges in motion.  Forces between current-carrying wires 

present familiar examples that we can use to determine what a magnetic force field should look like: 

Here are the easily-observed facts:



Magnetic Field
The geometry of the magnetic field is set up to correctly model forces between currents that 

allow for any relative orientation.  The magnetic field intensity, H, circulates around its source, I1,

in a direction most easily determined by the right-hand rule:  Right thumb in the direction of the 

current, fingers curl in the direction of H

Note that in the third case (perpendicular currents), I2 is in the same direction as H, so that their 

cross product (and the resulting force) is zero.   The actual force computation involves a different

field quantity, B, which is related to H through B = H in free space.  This will be taken up in 

a later lecture.  Our immediate concern is how to find H from any given current distribution.



Biot-Savart Law

The Biot-Savart Law specifies the 

magnetic field intensity,  H, arising 

from a “point source” current element 

of differential length dL.

Note in particular the inverse-square 

distance dependence, and the fact that 

the cross product will yield a field vector 

that points into the page.  This is a formal 

statement of the right-hand rule

Note the similarity to Coulomb’s Law, in which 

a point charge of magnitude dQ1 at Point 1 would 

generate electric field at Point 2 given by:

The units of H are [A/m]



Magnetic Field Arising From a Circulating Current

At point P, the magnetic field associated with 

the differential current element IdL is 

The contribution to the field at P from any portion of the current will be just the above integral evalated

over just that portion.

To determine the total field arising from the closed circuit path, 

we sum the contributions from the current elements that make up

the entire loop, or



Two- and Three-Dimensional Currents

On a surface that carries uniform surface current

density K [A/m], the current within width b is

..and so the differential current quantity that

appears in the Biot-Savart law becomes:

The magnetic field arising from a current 

sheet is thus found from the two-dimensional 

form of the Biot-Savart law:

In a similar way, a volume current will be made up

of three-dimensional current elements, and so the Biot-Savart

law for this case becomes:



Example of the Biot-Savart Law

In this example, we evaluate the magnetic field intensity on the y axis (equivalently in the xy plane) 

arising from a filament current of infinite length in on the z axis.

Using the drawing, we identify:

and so.. 

so that:



Example: continued

We now have:

Integrate this over the entire wire:

..after carrying out the cross product



Example: concluded

we have:

finally:

Current is into the page. 

Magnetic field streamlines 

are concentric circles, whose magnitudes

decrease as the inverse distance from the z axis

Evaluating the integral:



Field Arising from a Finite Current Segment
In this case, the field is to be found in the xy plane at Point 2.  

The Biot-Savart integral is taken over the wire length:

..after a few additional steps (see Problem 7.8), we find:



Another Example: Magnetic Field from a 

Current Loop

Consider a circular current loop of radius a in the x-y plane, which 

carries steady current I.  We wish to find the magnetic field strength

anywhere on the z axis.

We will use the Biot-Savart Law:

where:



Example: Continued

Substituting the previous expressions, the Biot-Savart Law becomes:

carry out the cross products to find:

but we must include the angle dependence in the radial

unit vector:

with this substitution, the radial component will integrate to zero, meaning that all radial components will

cancel on the z axis.  



Example: Continued

Now, only the z component remains, and the integral 

evaluates easily:

Note the form of the numerator:  the product of

the current and the loop area.  We define this as 

the magnetic moment:



Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H about any closed path

is exactly equal to the direct current enclosed by that path.

In the figure at right, the integral of H about closed paths a and b gives

the total current I, while the integral over path c gives only that portion 

of the current that lies within c



Ampere’s Law Applied to a Long Wire



Choosing path a, and integrating H around the circle 

of radius  gives the enclosed current, I:

so that: as before.

Symmetry suggests that H will be circular, constant-valued

at constant radius, and centered on the current (z) axis.



Coaxial Transmission Line

In the coax line, we have two concentric 

solid conductors that carry equal and opposite

currents, I.

The line is assumed to be infinitely long, and the

circular symmetry suggests that H will be entirely

 - directed, and will vary only with radius .

Our objective is to find the magnetic field 

for all values of 



Field Between Conductors

The inner conductor can be thought of as made up of a

bundle of filament currents, each of which produces the

field of a long wire.  

Consider two such filaments, located at the same 

radius from the z axis, , but which lie at symmetric

 coordinates,  and -Their field contributions 

superpose to give a net H component as shown.  The 

same happens for every pair of symmetrically-located 

filaments, which taken as a whole, make up the entire 

center conductor.  

The field between conductors is thus found to be the same

as that of filament conductor on the z axis that carries current,

I.  Specifically:

a <  < b



Field Within the Inner Conductor

With current uniformly distributed inside the conductors, the H can be assumed circular everywhere.

Inside the inner conductor, and at radius  we again have:

But now, the current enclosed is

so that or finally:



Field Outside Both Conducors

Outside the transmission line, where > c, 

no current is enclosed by the integration path,

and so 

0

As the current is uniformly distributed, and since we

have circular symmetry, the field would have to 

be constant over the circular integration path, and so it

must be true that:



Field Inside the Outer Conductor

Inside the outer conductor, the enclosed current consists

of that within the inner conductor plus that portion of the 

outer conductor current existing at radii less than 

Ampere’s Circuital Law becomes

..and so finally:



Magnetic Field Strength as a Function of Radius in 

the Coax Line

Combining the previous results, and assigning dimensions as shown in the inset below, we find:



Magnetic Field Arising from a Current Sheet

For a uniform plane current in the y direction, we expect an x-directed H field from symmetry.

Applying Ampere’s circuital law to the path we find:

or

In other words, the magnetic field is discontinuous across the current sheet by the magnitude of the surface 

current density.



Magnetic Field Arising from a Current Sheet

If instead, the upper path is elevated to the line between    and     , the same current is enclosed and we would have

from which we conclude that 

By symmetry, the field above the sheet must be

the same in magnitude as the field below the sheet.

Therefore, we may state that

and

so the field is constant in each region (above and below the current plane)



Magnetic Field Arising from a Current Sheet

The actual field configuration is shown below, in which magnetic field above the current sheet is 

equal in magnitude, but in the direction opposite to the field below the sheet.

The field in either region is found by the cross product:

where aN is the unit vector that is normal to the 

current sheet, and that points into the region in 

which the magnetic field is to be evaluated.



Magnetic Field Arising from Two Current Sheets

Here are two parallel currents, equal and opposite, as you would find in a parallel-plate 

transmission line.  If the sheets are much wider than their spacing, then the magnetic field

will be contained in the region between plates, and will be nearly zero outside.

K1 = -Ky ay

K2 = -Ky ay

Hx1 (z < -d/2 )

Hx1 (-d /2 < z < d/2 )

Hx2 (-d /2 < z < d/2 )

Hx2 (z < -d/2 )

Hx1 (z > d/2 )

Hx2 (z > d/2 )
These fields cancel for current sheets of 

infinite width.

These fields cancel for current sheets of 

infinite width.

These fields are equal and add to give

H = K x aN    (-d/2 < z < d/2 )

where K is either K1 or K2



Current Loop Field

Using the Biot-Savart Law, we previously found the magnetic

field on the z axis from a circular current loop:

We will now use this result as a building block

to construct the magnetic field on the axis of 

a solenoid -- formed by a stack of identical current

loops, centered on the z axis.



On-Axis Field Within a Solenoid

We consider the single current loop field as a differential 

contribution to the total field from a stack of N closely-spaced

loops, each of which carries current I.  The length of the stack

(solenoid) is d, so therefore the density of turns will be N/d.

Now the current in the turns within a differential length, dz, will be

z

-d/2

d/2

so that the previous result for H from a single loop:

now becomes:

in which z is measured from the center of the coil,

where we wish to evaluate the field.

We consider this as our differential “loop current”



Solenoid Field, Continued

z

-d/2

d/2

The total field on the z axis at z = 0 will be the sum of the 

field contributions from all turns in the coil -- or the integral

of dH over the length of the solenoid.



Approximation for Long Solenoids 

z

-d/2

d/2

We now have the on-axis field at the solenoid midpoint (z = 0):

Note that for long solenoids, for which                , the

result simplifies to: 

(           )

This result is valid at all on-axis positions deep within long coils -- at distances from each end of several radii.  



Another Interpretation: Continuous Surface Current

The solenoid of our previous example was assumed to have many tightly-wound turns, with several

existing within a differential length, dz.   We could model such a current configuration as a continuous

surface current of density K = Ka a A/m.

Therefore:

In other words, the on-axis field magnitude near the center of a cylindrical 

current sheet, where current circulates around the z axis, and whose length 

is much greater than its radius, is just the surface current density. 

d/2

-d/2



Solenoid Field -- Off-Axis

To find the field within a solenoid, but off the z axis, we apply Ampere’s Circuital Law in the following way:

The illustration below shows the solenoid cross-section, from a lengthwise cut through the z axis.  Current in

the windings flows in and out of the screen in the circular current path.  Each turn carries current I. The magnetic

field along the z axis is NI/d as we found earlier.  



Application of Ampere’s Law

Applying Ampere’s Law to the rectangular path shown below leads to the following:

Where allowance is made for the existence of a radial H component, 



Radial Path Segments

The radial integrals will now cancel, because they are oppositely-directed, and because in the long coil,

is not expected to differ between the two radial path segments.



Completing the Evaluation

What is left now are the two z integrations, the first of which we can evaluate as shown.  Since

this first integral result is equal to the enclosed current, it must follow that the second integral -- and 

the outside magnetic field -- are zero. 



Finding the Off-Axis Field

The situation does not change if the lower z-directed path is raised above the z axis.  The vertical

paths still cancel, and the outside field is still zero.  The field along the path A to B is therefore NI/d

as before. 

Conclusion:  The magnetic field within a long solenoid is approximately constant throughout the coil 

cross-section, and is Hz = NI/d.



Toroid Magnetic Field

A toroid is a doughnut-shaped set of windings around a core material.  The cross-section could be

circular (as shown here, with radius a) or any other shape.    

Below, a slice of the toroid is shown, with current

emerging from the screen around the inner periphery

(in the positive z direction).  The windings are modeled 

as N individual current loops, each of which carries current I.



Ampere’s Law as Applied to a Toroid

Ampere’s Circuital Law can be applied to a toroid by taking a closed loop integral 

around the circular contour C at radius  Magnetic field H is presumed to be circular,

and a function of radius only at locations within the toroid that are not too close to the 

individual windings.  Under this condition, we would assume:

Ampere’s Law now takes the form:

so that….

Performing the same integrals over contours drawn 

in the regions                         or                         will 

lead to zero magnetic field there, because no current 

is enclosed in either case.

This approximation improves as the density of turns gets higher

(using more turns with finer wire).



Surface Current Model of a Toroid

Consider a sheet current molded into a doughnut shape, as shown.  

The current density at radius               crosses the xy plane in the z 

direction and is given in magnitude by Ka

Ampere’s Law applied to a circular contour C inside the

toroid (as in the previous example) will take the form:

leading to…

inside the toroid…. and the field is zero outside as before.



Ampere’s Law as Applied to a Small Closed Loop.

Consider magnetic field H evaluated at the point

shown in the figure.  We can approximate the field

over the closed path 1234 by making appropriate 

adjustments in the value of H along each segment.

The objective is to take the closed path integral 

and ultimately obtain the point form of Ampere’s Law. 



Approximation of H Along One Segment

Along path 1-2, we may write:

where:

And therefore:



Contributions of y-Directed Path Segments

The contributions from the front and back sides will be:

The contribution from the opposite side is:

This leaves the left and right sides…..

Note the path directions as specified in the figure, and 

how these determine the signs used .



Contributions of x-Directed Path Segments

Along the right side (path 2-3):

…and the contribution from the left side (path 4-1) is:

The next step is to add the contributions of all four sides to find the closed path integral:



Net Closed Path Integral

The total integral will now be the sum:

and using our previous results, the becomes:



Relation to the Current Density

By Ampere’s Law, the closed path integral of H is equal to the enclosed current, approximated in 

this case by the current density at the center, multiplied by the loop area:

Dividing by the loop area, we now have:

The expression becomes exact as the loop area

approaches zero:



Other Loop Orientations

The same exercise can be carried with the rectangular loop in the other two orthogonal orientations. 

The results are:

Loop in yz plane:

Loop in xz plane:

Loop in xy plane:

This gives all three components of the current density field.



Curl of a Vector Field

The previous exercise resulted in the rectangular coordinate representation of the Curl of H.

In general, the curl of a vector field is another field that is normal to the original field.

The curl component in the direction N, normal to the plane of the integration loop is: 

The direction of N is taken using the right-hand convention:  With fingers of the right hand oriented

in the direction of the path integral, the thumb points in the direction of the normal (or curl).



Curl in Rectangular Coordinates

Assembling the results of the rectangular loop integration exercise, we find the vector field

that comprises curl H:

An easy way to calculate this is to evaluate the following determinant:

which we see is equivalent to the cross product of the del operator with the field:



Curl in Other Coordinate Systems

…a little more complicated!

Look these up as needed….



Visualization of Curl

Consider placing a small “paddle wheel” in a flowing stream of water, as shown below.  The wheel 

axis points into the screen, and the water velocity decreases with increasing depth. 

The wheel will rotate clockwise, and give a curl component that points into the screen (right-hand rule).

Positioning the wheel at all three orthogonal orientations will yield measurements of 

all three components of the curl.  Note that the curl is directed normal to both the field 

and the direction of its variation.



Another Maxwell Equation

It has just been demonstrated that:

…..which is in fact one of Maxwell’s equations for static fields:

This is Ampere’s Circuital Law in point form.



….and Another Maxwell Equation

We already know that for a static electric field:

This means that:

Recall the condition for a conservative field:  that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has  zero curl at all points over which the field is defined.

(applies to a static electric field)



Curl Applied to Partitions of a Large Surface

Surface S is paritioned into sub-regions, each of small area  

The curl component that is normal to a surface element can

be written using the definition of curl:

or:

We now apply this to every partition on the surface, and add the results….



Adding the Contributions

.

Cancellation here:

We now evaluate and add the curl contributions

from all surface elements, and note that 

adjacent path integrals will all cancel!

This means that the only contribution to the 

overall path integral will be around the outer 

periphery of surface S.

No cancellation here:

Using our previous result, we now write:



Stokes’ Theorem

.

We now take our previous result, and take the limit as 

In the limit, this side 

becomes the path integral 

of H over the outer perimeter

because all interior paths 

cancel

In the limit, this side

becomes the integral 

of the curl of H over

surface S

The result is Stokes’ Theorem

This is a valuable tool to have at our disposal, because it gives us two ways to evaluate the same thing!



Obtaining Ampere’s Circuital Law in Integral Form, 

using Stokes’ Theorem

Begin with the point form of Ampere’s Law for static fields:

Integrate both sides over surface S:

..in which the far right hand side is found from the left hand side

using Stokes’ Theorem.  The closed path integral is taken around the 

perimeter of S.  Again, note that we use the right-hand convention in 

choosing the direction of the path integral.

The center expression is just the net current through surface S, 

so we are left with the integral form of Ampere’s Law:



Magnetic Flux and Flux Density

We are already familiar with the concept of electric flux:

Coulombs

in which the electric flux density in free space is:

In a similar way, we can define the magnetic flux in units of Webers (Wb):

Webers

in which the magnetic flux density (or magnetic induction) in free space is:

and where the free space permittivity is 

and where the free space permeability is

This is a defined quantity, having to do with the definition of the ampere (we will explore this later).



A Key Property of B

If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

If the same were to be done with magnetic flux density, we would find:

The implication is that (for our purposes) there are no magnetic charges 

-- specifically, no point sources of magnetic field exist.  A hint of this has already

been observed, in that magnetic field lines always close on themselves.



Another Maxwell Equation

We may rewrite the closed surface integral of B using the divergence theorem, in which the 

right hand integral is taken over the volume surrounded by the closed surface:

Because the result is zero, it follows that

This result is known as Gauss’ Law for the magnetic field in point form.



Maxwell’s Equations for Static Fields

We have now completed the derivation of Maxwell’s equations for no time variation. In point form, these are:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the Magnetic Field

where, in free space:

Significant changes in the above four

equations will occur when the fields are 

allowed to vary with time, as we’ll see later.



Maxwell’s Equations in Large Scale Form

The divergence theorem and Stokes’ theorem can be applied to the previous four point form equations 

to yield the integral form of Maxwell’s equations for static fields:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the magnetic field



Example:  Magnetic Flux Within a Coaxial Line

dB

Consider a length d of coax, as shown here.  The magnetic field strength between conductors is:

and so:

The magnetic flux is now the integral of B over the 

flat surface between radii a and b, and of length d along z: 

The result is:

The coax line thus “stores” this amount of magnetic flux in the region between conductors.  

This will have importance when we discuss inductance in a later lecture.



Scalar Magnetic Potential

We are already familiar with the relation between the scalar electric potential and electric field: 

So it is tempting to define a scalar magnetic potential such that:

This rule must be consistent with Maxwell’s equations, so therefore:

But the curl of the gradient of any function is identically zero!  Therefore, the scalar magnetic potential

is valid only in regions where the current density is zero (such as in free space).

So we define scalar magnetic

potential with a condition:



Further Requirements on the Scalar Magnetic Potential

The other Maxwell equation involving magnetic field must also be satisfied.  This is:

in free space

Therefore:

..and so the scalar magnetic potential satisfies Laplace’s equation (again with the restriction

that current density must be zero:



Example:  Coaxial Transmission Line

With the center conductor current flowing out of the screen, we have

Thus:

So we solve:

.. and obtain:

where the integration constant has been set to zero



Ambiguities in the Scalar Potential

The scalar potential is now:

where the potential is zero at 

At point P ( ) the potential is

But wait!  As      increases to  

we have returned to the same physical location, and 

the potential has a new value of -I.

In general, the potential at P will be multivalued, and will

acquire a new value after each full rotation in the xy plane:



Overcoming the Ambiguity

Barrier at 

To remove the ambiguity, we construct a mathematical barrier at any value of phi.  The angle domain 

cannot cross this barrier in either direction, and so the potential function is restricted to angles on either

side.   In the present case we choose the barrier to lie at               so that   

The potential at point P is now single-valued:



Vector Magnetic Potential

We make use of the Maxwell equation:

.. and the fact that the divergence of the curl of any vector field is identically zero (show this!)

This leads to the definition of the magnetic vector potential, A:

Thus:

and Ampere’s Law becomes 



Equation for the Vector Potential

We start with:

Then, introduce a vector identity that defines the vector Laplacian:

Using a (lengthy) procedure (see Sec. 7.7) it can be proven that

 We are therefore left with



The Direction of A

We now have

In rectangular coordinates:

The equation separates to give:

This indicates that the direction of A will be the same as that of the current to which it is associated.

(not so simple in the 

other coordinate systems)

The vector field, A, existing in all space, is sometimes described as being a “fuzzy image”
of its generating current.  



Expressions for Potential

Consider a differential elements, shown here.  On the left is a point charge represented

by a differential length of line charge.  On the right is a differential current element.  The setups

for obtaining potential are identical between the two cases.  

Line Charge Line Current

Scalar Electrostatic Potential Vector Magnetic Potential



General Expressions for Vector Potential

For large scale charge or current distributions, we would sum the differential 

contributions by integrating over the charge or current, thus:

and 

The closed path integral is taken because the current must

close on itself to form a complete circuit.

For surface or volume current distributions, we would have, respectively:

or

in the same manner that we used for scalar electric potential.



Example

We continue with the differential current element as shown here:

In this case

becomes at point P:

Now, the curl is taken in cylindrical coordinates:

This is the same result as found using the Biot-Savart Law (as it should be)


